Magyar AI-fejlesztés segíti az egészségügyi diagnosztikát
Gazdaság

Magyar AI-fejlesztés segíti az egészségügyi diagnosztikát

Portfolio
Az egészségügyi területen való mesterséges intelligencia fejlesztés során gyakran találkozunk a jó minőségű, címkézett adatok beszerzésének problémájával. A nyílt adatbázisokban sok kép van, de ezek nem használhatók fel egy komoly egészségügyi MI fejlesztéséhez. Ahhoz például, hogy egy bőrbetegségről készült kép az algoritmus számára oktató anyag lehessen, három, egymástól független orvosnak kell megerősítenie, hogy a képen tényleg az adott betegség található. Ugyanez igaz például a radiológiára, és minden orvosi képalkotási eljárásra is. Képzeljük el, micsoda idő és költség ez egy több százezres adathalmaz esetén. Ez azért fontos, mert ha véletlenül rossz adaton tanítjuk be az algoritmust, rossz diagnózist kaphatunk is, amelyen emberéletek is múlhatnak - írja elemzésében
Fazekas István, az AIP Labs társalapítója.

A cikk megjelenését az AIP Labs támogatta.

De mégis, hogyan működik mindez? Ennek megértéséhez először tisztáznunk kell néhány alapfogalmat. A gépi tanulás az a terület, ahol a számítógépek tanulnak a tapasztalatokból anélkül, hogy explicit programoznánk őket. A deep learning pedig a gépi tanulás egy speciális ága, amely neurális hálózatokkal dolgozik. Ezek a hálózatok olyanok, mint az emberi agy: neuronokból épülnek fel, és az információ áthalad rengeteg kapcsolaton keresztül.

Ez az adathiány nem csak pénzügyileg megterhelő az ezzel foglalkozó vállalkozások és kutatók számára, hanem gátolja is a mesterséges intelligencia fejlődését.

Magyar fejlesztők azonban rájöttek arra, hogy képesek olyan fejlett, úgynevezett generatív mesterséges intelligenciát gyártani, amely meglévő adatokból, újabb adatokat képes generál.

Tehát, már meglévő bőrbetegségek képéből, eltérő, de ugyanazon betegségekről szóló szintetikus képeket tud készíteni. Ezzel a megoldással, számtalan problémát ki lehet küszöbölni, így azt is, hogy egyes ritka betegségekről nagyon kevés képi anyag van. Az AIP Labs kutatói tanulmányt is közöltek eredményeikről, amit azóta nemzetközileg is felkaptak.

Gyógyír a tanulásra

Felmérések alapján kijelenthető, hogy egyre több betegre egyre kevesebb orvos jut világszerte, nőnek a várólisták. Ezért kulcskérdéssé válik az egészségügy fenntarthatósága szempontjából, hogy az MI át tudja-e venni részben az orvosok munkáját, és segíteni őket a gyors diagnózis alkotásban.

A bőrbetegségek detektálásához és egyéb orvosi diagnózisalkotáshoz a gépi tanulásnak rengeteg adatra van szüksége, különösen címkézett képekre. Nem maga a fotó a kulcs, hanem a képekhez rendelt címkék, amelyek segítik a gépi tanulást. Bőrgyógyászat területén tehát nem is a bőrbetegségről szóló kép  az érték, hanem az, hogy tudjuk, a képen biztosan például ekcéma látható. Na de mi van akkor, ha nincs elegendő címkézett adat, vagyis nincs annyi kép egy-egy ritka betegségről, amely elegendő ahhoz, hogy a diagnosztikai MI-t betanítsa?

Ekkor jön képbe a generatív mesterséges intelligencia, amit az AIP Labs fejlesztett: a generatív modell valós képeken tanul, majd létrehoz olyan képeket, amelyek hasonlítanak a valódiakra. A megoldás egy úgynevezett diffúziós modell, ami a valós adatokból származó információkat felhasználva hoz létre szintetikus képeket. A szintetikus képek gyakran segíthetnek más, a cég által fejlesztett képfelismerő egészségügyi mesterséges intelligenciák teljesítményének javításában, különösen, ha a nincs elegendő mennyiségű címkézett adat. Például ritka bőrbetegségek esetén, mint a majomhimlő, aminek felismerése kulcskérdés lett, így egy kis számú adatsorból gyorsan lehet nagy számú adatsort csinálni, amelyet az orvosi validáció után fel lehet használni a gépi tanuláshoz.

Miért baj a kevés kép? Az egyik kihívás az, hogy kevés bőrbetegség esetén a gépi tanuló modell nem feltétlenül ismeri fel őket olyan hatékonyan. A generatív modell ebben a helyzetben lép előtérbe, mivel lehetőséget nyújt számunkra, hogy létrehozzunk olyan szintetikus adatokat, amelyek segítenek a modell továbbfejlődésében.

Mindez a mesterséges intelligencia fejlesztésben jól ismert “overfitting” jelenségére is gyógyírt nyújt. Overfitting az, amikor a gépi tanulásban egy modell túlságosan alkalmazkodik a tanítóadatokhoz, és ezáltal gyenge teljesítményt mutat új adatokon. Egy egyszerű példa segíthet megérteni ezt a fogalmat. Képzeljük el, hogy matematika érettségire készít fel a tanár egy gimnáziumi csoportot. Abból indul ki, hogy a feladatok nagyon hasonlóak az érettségin, ezért a tavalyi érettségi feladatsor típusfeladatait gyakoroltatja egész évben a diákokon. A diákok teljesítménye láthatóan javul is, a végére már nagyon jól megoldják a matekpéldákat. Az érettségin azonban idén sok új fajta feladat is lesz. Mi fog történni?

A diákok, mivel egy adott feladatot tanultak meg megoldani, nem értik meg a mögöttük álló matematikai alapelveket, és nem tudják matektudásukat más problémákra is hatékonyan alkalmazni. Így ők "túltanultak" egy fajta példán, ezért a tudásuk nem általánosítható más helyzetekre. Ugyanez igaz a mesterséges intelligenciára is. Ha a modell túlságosan összpontosít a tanítóadatokra, az azt eredményezheti, hogy nem tudja jól kezelni az új és változatos adatokat. Mindezt megoldja, hogy az AIP Labs már szintetikusan is létre tud hozni, új “matekpéldákat”, a régi érettségi feladatsorokból.

Persze mindez nem egyszerű: meg kellett tanítani az új MI modult, hogy hogyan változtasson át pixeleket úgy, hogy az eredeti képhez nagyon hasonlítson, de mégis minden pixelében más legyen. Most már azonban ott tartunk, hogy sok esetben a szintetikus képek jobb minőségűek, mint az eredetiek.

A generatív mesterséges intelligencia így nem csak egyszerűen tanul a meglévő adatokból, hanem alkot is.

Egy olyan virtuális művész, aki nem csak érti a képeket, hanem képes saját műalkotásokat létrehozni. És ezzel tanítani, más Mesterséges Intelligenciákat.

A cikk szerzője az AIP Labs társalapítója.

Címlapkép: AIP Labs

Holdblog

Piaci hiszti vagy hatékony fogadók?

Az tény, hogy gondban van a világ egyik legerősebb csapata, de az nem biztos, hogy a fogadók jól látják a helyzetet. A Manchester City teljesítményére... The post Piaci hiszti vagy hatékony foga

Kiszámoló

Lehet bérelni is

Nagyon gyakori eset, hogy valakinek van egy lakása, ami már szűkös a két kamasszal, de ami ingatlant szeretnének helyette, ahhoz fel kellene venni 60-70 millió forint vagy akár még több hitelt, a

FRISS HÍREK
NÉPSZERŰ
Összes friss hír
Érdekes időpontban kaphatnak

Gazdasági elemző

Gazdasági elemző
Property Warm Up 2025
2025. február 20.
Green Transition & ESG 2025
2025. március 6.
Biztosítás 2025
2025. március 4.
Agrárium 2025
2025. március 19.
Hírek, eseményajánlók első kézből: iratkozzon fel exkluzív rendezvényértesítőnkre!
Portfolio hírlevél

Ne maradjon le a friss hírekről!

Iratkozzon fel mobilbarát hírleveleinkre és járjon mindenki előtt.

Ügyvédek

A legjobb ügyvédek egy helyen

Díjmentes előadás

Tőzsdézz a világ legnagyobb piacain: Kezdő útmutató

A tőzsdei vagyonépítés során kulcsfontosságú az alapos kutatás és a kockázatok megértése, valamint a hosszú távú célok kitűzése és kitartó befektetési stratégia követése.

Interaktív online előadás

Warren Buffett helyett én: Kezdők útmutatója a befektetéshez

Fedezd fel a befektetés világát úgy, ahogy még sosem! Ez a webinárium egyszerűen és érthetően mutatja be az alapelveket, amelyekre még a legnagyobb befektetők, mint Warren Buffett is esküsznek.

Ez is érdekelhet
Trump nagy terve nem is olyan nagy dobás?